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ABSTRACT. A physico-mathematical semi-adiabatic model for γ-type Stirling motors is presented. The

model assumes that inside the expansion chamber and inside the compression space delimited by the displacer

piston inside its cylinder the gas evolves in adiabatic processes. The differential equation system describing the

functioning of the γ-type Stirling motor is obtained. A numerical example is used for comparison between the

functioning of the motor accordingly to the proposed model and the isothermal functioning of the γ-type motor.
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1. INTRODUCTION

A functional unit of a γ-type Stirling engine comprises one displacer piston 2 and one

power piston 9, each evolving in its own cylinder 3 and 10 (fig. 1).
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Fig. 1. Constructive scheme of a γ-type Stirling engine:

1 - compression space inside displacer's cylinder; 2 - displacer; 3 - displacer cylinder; 4 -

expansion chamber; 5 - heater; 6 - regenerator; 7 - cooler; 8 - compression space inside power

piston's cylinder; 9 - power piston; 10 - power piston's cylinder
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The two pistons delimit two functional chambers with variable volume, one expansion

chamber 4 and one compression chamber. The compression chamber is composed of two

separate spaces 1 and 8, each space being placed inside another cylinder. The expansion and

compression chambers are connected through three heat exchangers: heater 5, regenerator 6

and cooler 7.

The theoretical models of the Stirling engines assume that inside the variable volume

chambers the working gas evolves in processes at constant temperature or in adiabatic

processes. For the isothermal models - a case well studied in the literature [2], [4], [5] - in all

the variable volume chambers only isothermal processes take place. The particular

construction of the γ-type engine allows to elaborate some new theoretical physico-

mathematical models assuming that adiabatic processes take place inside one or both of the

compression spaces. In these cases the processes inside the expansion chamber are adiabatic.

2. SEMI-ADIABATIC PHYSICO-MATHEMATICAL MODEL

The semi-adiabatic model of the γ-type Stirling motor is based on the following

hypotheses:

● the working agent is the ideal gas,

● the gas amount evolving inside the machine is constant,

● at thermodynamic level all cycle functional processes are time independent,

● the metallic parts of the machine (other than those of the power piston's cylinder walls

confining the isothermal compression space) do not exchange heat either among them or with

the exterior,

● the processes inside heat regenerators are ideal ones (regeneration efficiencies are

100%); the agent temperature inside the regenerator is deemed constant, being taken as

logarithmic mean,

● inside the expansion chamber and inside the compression space inside the displacer's

cylinder (fig. 2) adiabatic processes take place; so, the temperature inside these chambers vary

cyclically,

● inside the compression space inside the power piston's cylinder (fig. 2) isothermal

processes take place; so, the temperature inside this chamber is constant,

● inside the cooler and heater only isothermal processes take place,

● the instantaneous pressure is identical in all the spaces occupied by the agent, its value

varying along the cycle,

● the movement of the displacer and of the power piston is the real movement, given by

the crankshaft.

The hypotheses implying the temperatures inside the γ-type Stirling motor show that

inside two of the machine chambers adiabatic processes take place and inside all other

chambers isothermal processes take place only, thus confirming the described physico-

mathematical model the denomination of semi-adiabatic model (this denomination is used

also by West [6]).

To outline the semi-adiabatic character of the physico-mathematical model analyzed here,

on fig. 2 the machine chambers are separate and placed in row. This presentation required the

halving of the displacer. To each variable volume chamber inside the displacer's cylinder half

of a displacer is assigned. The mechanical linkage between the displacer halves was

symbolically drawn through bars that are exterior to the cylinder.

The following subscripts for dimensions inside machine chambers (volume V,

temperature T, mass m) were used: e = expansion; h = heater; reg = regenerator; k = cooler;

c = compression; 1 = displacer; 2 - power piston; T = total. The composed subscripts c1-k and
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h-e refer to the dimensions describing the separating sections between the adiabatic

compression space and expansion chamber and their adjacent cooler and heater.
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Fig. 2. Semi-adiabatic model of a γ-type Stirling motor

The model uses the differential equation of the conservation of the working agent total

mass, the equation of state applied to the heat exchangers and to the isothermal compression

space and the differential law of conservation of energy written for the adiabatic chambers.

The differential equation of the conservation of the working agent total mass is

         )m(d)m(d)m(d)m(d)m(d)m(d0)m(d ehregk2c1cT +++++== .   (1)

The differential expressions of the agent masses inside the heat exchangers are obtained

from the equation of state, in which V = const. and T = const.:

m

dm

p

dp
= .   (2)

The mass m is taken from the equation of state and the differential expression of the

mass inside a generic heat exchanger becomes:

dp
TR

V
dm

j

j
j = .   (3)

where the subscript j is replaced by h, reg and k.

For the isothermal compression space inside the power piston's cylinder the equation of

state written at T = const. in differential form becomes:

     
2c

2c

2c

2c

m

dm

V

dV

p

dp
=+ .   (4)
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For the mass differential expression the following form is obtained:

)dpVdVp(
TR

1
dm 2c2c

2c
2c += ,   (5)

where Tc2 = Tk .

Accordingly to the adopted hypotheses, inside the adiabatic chambers the gas exchanges

work with the surrounding environment (through piston movement) and enthalpy with the

neighbouring chambers (through the agent's entering the chamber from the neighbouring

heater or cooler or leaving it toward the heater or cooler). The internal energy of the gas

inside the adiabatic chamber changes as a consequence of mass and temperature variations.

Inside these two adiabatic chambers the heat exchanged is zero, conformingly to the

hypothesis of the model. The energy balance takes the expression:

dQdIdUdL =++ .   (6)

For the adiabatic compression chamber (dQ = 0) the terms in (6) are explicated by the

following relations:

1c1c dVpdL =  ,   (7)

)dVpdpV(
R

c
)Tmc(ddU 1c1c

v
1c1cv1c +==  ,   (8)

1ck1cpk1ck1cpk1c dmTc)Tmc(ddI
−−−−

−==  .   (9)

Equation (9) takes into account that dmc1-k = -dmc1, because the mass of working agent

that passes through the section c1-k is equal to the variation of the mass of the gas inside the

space c1, taken with opposite sign. The positive sense of the agent flow inside the machine is

considered to be from the compression chamber toward the expansion chamber. The term cp

mc1 dTc1-k was neglected, assuming the hypothesis according to which it is small in

comparison with the other term.

Introducing the expressions (7), (8) and (9) in (6) and explaining the mass differential, the

following relation is obtained for the differential of the working gas mass inside the adiabatic

compression chamber:







+=

−

dp
k

V
dVp

TR

1
dm 1c

1c
k1c

1c . (10)

Similarly, for the expansion chamber the next expression is obtained

   





+=

−

dp
k

V
dVp

TR

1
dm e

e
eh

e . (11)

Introducing the expressions of the mass differentials for all the chambers of the machine,

given by (3), (5), (10) and (11) in (1), after some algebraic operations, the differential

expression of the pressure is obtained:
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For the adiabatic chambers the differential expressions of the temperatures are taken from

the equation of state. Particularizing for each adiabatic chamber, the following relations are

obtained






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Equations (12), (10), (11), (13) and (14) form the system of differential equations of the

semi-adiabatic physico-mathematical model of the γ-type Stirling motor. The unknown

functions are the pressure p, the masses mc1 and me inside the adiabatic compression and

expansion chambers and the temperatures Tc1 and Te in the same chambers. The system is

nonlinear, because there are several terms in the differential equations that have an order

higher than one. The system has variable coefficients and the conditional temperatures Tc1-k

and Th-e of the agent that passes through the surfaces c1-k and h-e depend on the sense of the

gas flow. The conditional temperatures take the expressions:

1ck1c TT =
−

if   0m k1c >
−

  (or  0dm 1c < );

kk1c TT =
−

if   0m k1c <
−

  (or  0dm 1c > );

heh TT =
−

if   0m eh >
−

   (or  0dme > ); (16)

eeh TT =
−

if   0m eh <
−

   (or  0dme < ).

The system can be solved only by numerical integration. If the values of the unknown

functions are adopted for a certain point in time, the problem is a initial value one and the

numerical solution can be found with a Runge-Kutta method. The solution is obtained after

several iterations, each of them using the previous one's results as initial values and thus

getting closer to the result as the analysis goes on.

Inside the model the heat amounts cyclically exchanged inside the machine chambers are

calculated for each chamber by integrating relation (6). The work cyclically exchanged inside

each chamber is calculated by integrating the defining relation dL = p dV. The work L

cyclically exchanged by the motor with the exterior is equal to the algebraic sum of heats

exchanged inside the chambers.

The thermal efficiency of the γ-type Stirling motor is determined with the defining

relation:

r
t

Q

L
η = , (17)

where Qr is the heat cyclically received by the motor.
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3. NUMERICAL EXAMPLE

A γ-type Stirling motor featuring the following dimensions is assumed: D1 = D2 = 0,073

m; d1= 0,02 m; r1 = r2 = 0,0365 m; l1= l2 = 0,15 m; fTDP1 = fBDP1 = fTDP2 = 0,001 m; Vh = Vk =

0.1 VS; Vreg = 1,2 VS, where VS = 0.3055  10
-3

 m
3
 (volume swept by the displacer). Here D =

cylinder diameter, d = stem diameter, r = crankshaft radius, l = rod lehght, f = dead space

lenght and the subscript S stands for stroke. The machine works with a total mass of hydrogen

m = 0.002 kg (RH2 = 4121 J/(kg K) ) between temperatures Th = 773 K and Tk = 310 K.

The numerical solving of the described semi-adiabatic model of the γ-type Stirling motor

equations leads to the results displayed in fig. 3, fig. 4 and fig. 5, as well as inside table 1.
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Fig. 3. Pressure variation inside the γ-type Stirling motor
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Fig. 4. Temperature variation inside the adiabatic compression chamber

The pressure variation inside the machine and the temperature variations in the adiabatic

chambers are shown in fig. 3, fig. 4 and fig. 5.
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Fig. 5. Temperature variation inside the adiabaticexpansion chamber

Table 1. Numerical results

Qc1 Qc2 Qk Qh Qe Lc1 Lc2 Le L ηt

Model

[J/cycle] [J/cycle] -

isothermal
-456.6 258.6 0 0 493.7 -456.6 258.6 493.7 295.7 0.599

semi-

adiabatic 0 241.1 -518.4 560.5 0 -518.3 241.1 560.4 283.1 0.505

4. CONCLUSIONS

The physico-mathematical semi-adiabatic model proposed for the numerical simulation of

γ-type Stirling motor functioning allows for providing information on the possible

performance the machine is capable of. Inside a real machine the heat exchanges do not take

place isothermally, the heat regeneration is not ideal and the agent flow through the heat

exchangers occurs with friction, all these facts lowering the performance beneath the semi-

adiabatic one. The pressure variation inside the machine, calculated with the semi-adiabatic

model, is close to the one calculated with the isothermal model, because a large quantity of

the working agent is placed inside chambers considered to be isothermal in both models -

especially in the regenerator.

In the semi-adiabatic model the temperature inside the adiabatic compression space is -

for the most part of the cycle - above the neighbouring cooler temperature. The mean

temperature inside this adiabatic chamber is above the cooler temperature too.

In the semi-adiabatic model the temperature inside the adiabatic expansion space is - for

the most part of the cycle - below the neighbouring heater temperature. The mean temperature

inside the expansion chamber is below the heater temperature too.

The model stresses the heat amounts exchanged inside the machine chambers.

Accordingly to the adopted hypotheses, the cooler and the heater - that are adjacent to the

adiabatic chambers - cyclically exchange nonzero heats. The isothermal compression space

also exchanges heat with the low temperature source.
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The heat amounts exchanged with the heat sources calculated using the semi-adiabatic

model are larger than the corresponding ones calculated with the isothermal model. The work

exchanged is greater for the isothermal model. The semi-adiabatic thermal efficiency is

smaller than the isothermal one. The isothermal efficiency is equal to the thermal efficiency of

a Carnot cycle evolving between the same temperatures. The semi-adiabatic model allows for

a rapid analysis of the influence some constructive and functional factors have (more than the

isothermal model can support) as well as for comparing different machines.
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